If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+14x-77=0
a = 11; b = 14; c = -77;
Δ = b2-4ac
Δ = 142-4·11·(-77)
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-16\sqrt{14}}{2*11}=\frac{-14-16\sqrt{14}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+16\sqrt{14}}{2*11}=\frac{-14+16\sqrt{14}}{22} $
| 4500x^-3=0 | | 2x/5-4=4 | | (2/3x)+6=(3/4x) | | 2w/6=5+2w/3 | | 10(z+3)-3(z-2)=2(z-3)+4(z-1) | | 7/m=5/3 | | 10=19x/(x^2-9) | | 4(3x-7)-4=4(x-2)+24 | | 4(2x-2)=5(3x+3) | | 4(3x-1)=64 | | 7d+5=14+4d | | 5m-9=3m+1 | | 6x-(3x+2)=13 | | 36/x=9/4 | | 2x+4=3x+-2 | | 16x^2+36x-145=0 | | x-7/20=5/15 | | -3p+77=5-(11p+7) | | 25(144)=x | | 2a+4a(a-6)=48 | | 14+2x-7=15 | | 2x+2(45/x)=P | | 2x+2(45/x)=0 | | 6/5x+4/10=32/10 | | 3a+3=4-2a | | 9x+8x=8 | | 4z+9=6z-5 | | xxx+3x-4=6 | | 5y+6=3y-8 | | 4-2(3x-0.5)=5x-2.5 | | 9+3.5g=11g | | x²+6x+9=17-x² |